Abstract

The pygmy dipole resonance and photon strength functions (PSF) in stable and unstable Ni and Sn isotopes are calculated within the microscopic self-consistent version of the extended theory of finite fermi systems in the quasiparticle time blocking approximation. The approach includes phonon coupling (PC) effects in addition to the standard QRPA approach. The Skyrme force SLy4 is used. A pygmy dipole resonance in 72Ni is predicted at the mean energy of 12.4 MeV exhausting 25.7% of the total energy-weighted sum rule. With our microscopic E1 PSFs in the EMPIRE 3.1 code, the following radiative nuclear reaction characteristics have been calculated for several stable and unstable even-even Sn and Ni isotopes: 1) neutron capture cross sections, 2) corresponding neutron capture gamma-spectra, 3) average radiative widths of neutron resonances. Here, three variants of the microscopic nuclear level density models have been used and a comparison with the phenomenological generalized superfluid model (GSM) has been performed. In all the considered properties, including the recent experimental data for PSF in Sn isotopes, the PC contributions turned out to be significant, as compared with the QRPA one, and necessary to explain the available experimental data. The phenomenological GSM NLD model used in EMPIRE3.1 gives, on the whole, the worse results than the microscopic HFB plus combinatorial NLD model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.