Abstract

Microplastic contamination is a global problem which has been threatening human health and the environment. There is still a knowledge gap about the effect of persistent rain on microplastics distribution and plastisphere community in fluvial environments. In this study, the abundance and composition of microplastics in the sediment and surface water from the Pearl River was investigated. Thirty polymers (10–500 μm) were identified from thirty-eight samples collected at ten sites using the newly developed laser direct infrared (LDIR) technique. The average concentrations of microplastics in the sediment and surface water were 1974 particles kg−1 and 290 particles L−1, respectively. Abnormally high concentrations of polyurethanes (PU) were possibly due to particulate pollution from ship antifouling. The persistent rain increased the abundance and diversity of microplastics in the surface water, whereas an opposite trend was observed in the sediment. Sediments could temporarily switch from microplastics sinks to potential sources under the effect of violent hydrodynamic disturbances. Additionally, plastisphere communities and predicted functional profiles indicated significant differences before and after the rain. Our study highlights the important impact of persistent rain on microplastic contamination in the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call