Abstract

The effect of perforation impedance on the acoustic behavior of reactive and dissipative silencers is investigated using experimental and computational approaches. The boundary element method (BEM) is applied for the prediction of transmission loss of silencers with different perforation geometries. The variations are considered in the porosity (8.4 and 25.7%) and hole diameter (0.249 and 0.498 cm) of perforations for both reactive and dissipative silencers, as well as the fiber filling density (100 and 200 kg/m3) for the latter. The acoustic impedance for a number of perforations in contact with air alone and fibrous material has been incorporated into the predictions, which are then compared with the measured transmission loss using an impedance tube setup. The results demonstrate the significance of the accuracy of the perforation impedance in the predictions for both reactive and dissipative silencers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call