Abstract
Peracetic acid (PAA) is widely used as a sterilizing/disinfecting agent, and, in endodontics, it has been introduced as a promising irrigant in root canal treatment. It has been used at different concentrations to achieve various functions. However, endodontic instruments in contact with PAA of a certain concentration may affect their fatigue resistance. Therefore, the aim of this study was to investigate the impact of PAA on the cyclic fatigue resistance of three commercial heat-treated nickel-titanium (NiTi) rotary files. Three types of heat-treated NiTi rotary files were selected: One Curve (OC), ProTaper Gold (PTG), and Wave One Gold (WOG). Each type was divided into three subgroups (n = 6 for each file type): (1) untreated instruments; (2) files immersed in 0.002% PAA; and (3) files immersed in 0.35% PAA. The performance of each file type was tested in a simulated canal. The number of cycles to fracture (NCF) was determined to assess cyclic fatigue resistance of the files. Independent sample t-test was applied to compare each treated file within a subgroup with its respective control group, and one-way ANOVA was used for comparison among the main groups. All types of tested files revealed a significant decline in the cyclic fatigue resistance after exposure to 0.002% PAA except the PTG (P=0.209). After exposure of the files to a higher concentration (0.35% PAA), a dramatic reduction was demonstrated by all the groups. Before and after exposure of the files to PAA, PTG displayed the highest cyclic fatigue resistance, followed by the WOG, while the OC showed the lowest resistance. Exposure of heated-treated NiTi files to PAA in a relatively high or low concentration adversely affects the cyclic fatigue resistance. The PTG files demonstrated the best performance among the tested types and can be disinfected with 0.002% PAA for clinical purpose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.