Abstract

Development of modern heat exchangers or solar collectors is related to the analysis of working fluid flow and heat transfer within different channels. The energy transport enhancement can be reached by including nanofluids as working media and irregular channels to intensify the heat removal. The present research is devoted to computational analysis of nanosuspension forced convection in a horizontal wavy channel under the impact of heating from the upper wavy surface. The single-phase nanofluid approach with experimentally-based correlations for viscosity and thermal conductivity holds implemented for an investigation in combination with Newton's second law for the description of the motion of the nanoparticle within the channel. The formulated boundary-value problem has been worked out by the finite element technique. Rules of Reynolds number, number of channel waviness, and dimensionless time on nanoliquid flow, energy transport and nanoparticles motion within the channel as well as average parameters. It has occurred that a rise from Reynolds number characterizes a narrowing of the fluid tube within the channel with an improvement of the average velocity and average Nusselt number. Augmentation of the channel waviness number results in an increment of the average particles velocity and average temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call