Abstract

Phosphorus (P) loss from intensive dairy farms is a pressure on water quality in agricultural catchments. At farm scale, P sources can enter in-field drains and open ditches, resulting in transfer along ditch networks and delivery into nearby streams. Open ditches could be a potential location for P mitigation if the right location was identified, depending on P sources entering the ditch and the source-sink dynamics at the sediment-water interface. The objective of this study was to identify the right location along a ditch to mitigate P losses on an intensive dairy farm. High spatial resolution grab samples for water quality, along with sediment and bankside samples, were collected along an open ditch network to characterise the P dynamics within the ditch. Phosphorus inputs to the ditch adversely affected water quality, and a step change in P concentrations (increase in mean dissolved reactive phosphorus (DRP) from 0.054 to 0.228 mg L−1) midway along the section of the ditch sampled, signalled the influence of a point source entering the ditch. Phosphorus inputs altered sediment P sorption properties as P accumulated along the length of the ditch. Accumulation of bankside and sediment labile extractable P, Mehlich 3 P (M3P) (from 13 to 97 mg kg−1) resulted in a decrease in P binding energies (k) to < 1 L mg−1 at downstream points and raised the equilibrium P concentrations (EPC0) from 0.07 to 4.61 mg L−1 along the ditch. The increase in EPC0 was in line with increasing dissolved and total P in water, demonstrating the role of sediment downstream in this ditch as a secondary source of P to water. Implementation of intervention measures are needed to both mitigate P loss and remediate sediment to restore the sink properties. In-ditch measures need to account for a physicochemical lag time before improvements in water quality will be observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call