Abstract

ABSTRACTA general kinetic model is proposed to describe the polypropylene thermal oxidation of thin polypropylene films in a wide range of temperatures (from 60 to 200°C) and oxygen partial pressures (from 0.02 to 5 MPa) using a single set of parameters. This model was calibrated with several series of experimental data including analyses of primary (hydroperoxides) and secondary oxidation products (carbonyl species), and subsequent changes in macromolecular properties (average molecular masses). It predicts the experimental data previously published in the literature in terms of induction times and maximal oxidation rates. The variability of the oxygen solubility coefficient allows to explain the scattering of induction times and oxidation rates among the whole iPP family, but also the dependence of this latter quantity with oxygen partial pressure. This variability is presumably due to iPP polymorphism in the temperature range where oxygen permeability is commonly measured. It is concluded that the kinetic model can be used to study the direct effect of iPP morphology on its thermal oxidation kinetics (chemistry of oxidation). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41441.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.