Abstract
The impact of oxygen and argon plasma exposure on the roughness of gold film Quartz Crystal Microbalance (QCM) electrodes is reported here, employing low levels of gas uptake and scanning tunneling microscope measurements to probe the post-exposure surface morphology. For equal exposure times, argon plasma bombardment is observed to produce both greater material removal and greater change in surface roughness. A possible explanation for this is that the oxygen plasma produces a protective gold oxide layer, which may remove the contaminants from the surface without creating defects in the gold surface. The result is also consistent with prior reports of chemical cleaning of the surface by reactive oxygen ions. Pentane gas adsorption on the argon bombarded QCM surfaces was, moreover, observed to occur at pressures that are several orders of magnitude lower than that for an unbombarded surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.