Abstract

Genistein (GEN) is known to be genotoxic via targeting topoisomerase-II (TOPII). Oxidative metabolism of GEN is shown to generate hydroxylated metabolites with catecholic structures. The present study focuses on the impact of oxidative metabolism of GEN, exemplified for 3'-hydroxygenistein (3'-OH-GEN) and 6-hydroxygenistein (6-OH-GEN), on topoisomerase interference and the resulting genotoxic potential in HT-29 human colon carcinoma cells. In a cell-free decatenation assay, 3'-OH-GEN slightly exceeds the TOPII-inhibiting potential of GEN. In HT-29 cells, its inhibitory action on TOPII does not differ from GEN, but it has greater activity with respect to causing DNA damage (measured by the comet assay), p53 activation (Western blot), apoptosis induction (ELISA), and cytotoxicity (WST-1 assay). This may to some extent be related to a stronger pro-oxidative potential of 3'-OH-GEN in comparison to GEN, as observed for the highest concentrations (DCF assay). 6-OH-GEN exerts much weaker toxic effects than GEN in cell-based assays, including TOPII poisoning, DNA strand-breaking potential, and ROS generation. This might in part arise from decreased cellular uptake of the metabolite, as measured by HPLC-DAD. Oxidative metabolism alters the toxicological potential of GEN. Depending on the site of oxidation, the toxicity of the parent compound is exceeded (3'-OH-GEN) or attenuated (6-OH-GEN).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.