Abstract

Abstract This paper examines the impact of orographically induced mesoscale heterogeneities on the macroscopic behavior of planetary boundary layer (PBL) stratiform clouds, and implements and tests a physically based parameterization of this effect in the University of California, Los Angeles (UCLA), atmospheric general circulation model (AGCM). The orographic variance and associated thermal circulations induce inhomogeneities in the cloud field that can significantly alter the PBL evolution; an effect that has been largely ignored in existing climate models. The impact of this effect on AGCM simulations is examined and the mechanisms at work are studied by analyzing a series of Cloud System Resolving Model (CSRM) simulations. Both the CSRM and AGCM results show that, in the absence of the orographic effect, the continental PBL tends to be in one of two regimes: the solid regime characterized by a cold and overcast PBL and the broken regime characterized by a low time-mean cloud incidence and a large-ampl...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call