Abstract

Partial nitration-anammox is a resource-efficient technology for nitrogen removal from wastewater. However, the advantages of this nitrogen removal technology are challenged by the emission of N2O, a potent greenhouse gas. In this study, a granular sludge one-stage partial nitritation-anammox reactor comprising granules and flocs was run for 337 days in the presence of influent organics to investigate its effect on N removal and N2O emissions. Besides, the effect of aeration control strategies and flocs removal was investigated as well. The interpretation of the experimental results was complemented with modelling and simulation. The presence of influent organics (1 g COD g-1 N) helped to suppress NOB and significantly reduced the overall N2O emissions while having no significant effect on anammox activity. Besides, long-term monitoring of the reactor indicated that constant airflow rate control resulted in more stable effluent quality and less N2O emissions than DO control. Still, floc removal reduced N2O emissions at DO control but increased N2O emissions at constant airflow rate. Furthermore, anammox bacteria could significantly reduce N2O production during heterotrophic denitrification, likely via competition for NO with heterotrophs. Overall, this study demonstrated that the presence of influent organics together with proper aeration control strategies and floc management could significantly reduce the N2O emissions without compromising nitrogen removal efficiency during one-stage partial nitritation-anammox processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.