Abstract
Under anoxic conditions, the interactions between As-bearing ferrihydrite (Fh) and As(V)-reducing bacteria are known to cause Fh transformations and As mobilization. However, the impact of different types of organic matter (OM) on microbial As/Fe transformation in As-bearing Fh-organic associations remains unclear. In our study, we therefore exposed arsenate-adsorbed ferrihydrite, ferrihydrite-PGA (polygalacturonic acid), and ferrihydrite-HA (humic acid) complexes to two typical Fe(III)- and As(V)-reducing bacteria, and followed the fate of Fe and As in the solid and aqueous phases. Results show that PGA and HA promoted the reductive dissolution of Fh, resulting in 0.7-1.6 and 0.8-1.9 times more As release than in the OM-free Fh, respectively. This was achieved by higher cell numbers in the presence of PGA, and through Fe-reduction via electron-shuttling facilitated by HA. Arsenic-XAS results showed that the solid-phase arsenite fraction in Fh-PGA and Fh-HA was 15-19% and 27-28% higher than in pure Fh, respectively. The solid-associated arsenite fraction likely increased because PGA promoted cell growth and As(V) reduction, while HA provided electron shuttling compounds for direct microbial As(V)-reduction. Collectively, our findings demonstrate that As speciation and partitioning during microbial reduction of Fh-organic associations are strongly influenced by PGA and HA, as well as the strains' abilities to utilize electron-shuttling compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.