Abstract
TianQin is a proposed space-based gravitational-wave observatory mission to be deployed in high circular Earth orbits. The equilateral-triangle constellation, with a nearly fixed orientation, can be distorted primarily under the lunisolar perturbations. To accommodate science payload requirements, one must optimize the orbits to stabilize the configuration in terms of arm-length, relative velocity, and breathing angle variations. In this paper, we present an efficient optimization method and investigate how changing the two main design factors, i.e. the orbital orientation and radius, impacts the constellation stability through single-variable studies. Thereby, one can arrive at the ranges of the orbital parameters that are comparatively more stable, which may assist future refined orbit design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.