Abstract

A set of ionic quasi-block copolymers were investigated to determine the effects of their composition and structure on their performance in their application as solid-state battery electrolytes. Diffusion and electrochemical tests have shown that these new quasi-block electrolytes have comparable performance to traditional block copolymers reaching ionic conductivities of 3.8 × 10-4 S cm-1 and lithium-ion diffusion of 4.6 × 10-12 m2 s-1 at 80 °C. It was illustrated that the mechanical properties of each quasi-block electrolyte are highly dependent on the order of monomer addition in polymer synthesis while the phase morphology hints at each of the quasi-blocks' unique compositional make up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.