Abstract

Papaya production and export is increasingly expanding in the world market due to the nutritional importance of the fruit. Phytosanitary issues, labor shortages, and unevenness in land-based costal and motorized applications compromise crops, the environment, and humankind. The purpose of this study was to evaluate the efficiency of droplet distribution using an unmanned aerial vehicle, with different application rates (12.0, 15.0, and 18.0 L ha−1) and spray nozzles (XR110015 and MGA015) in the upper (UL), middle (ML), and lower (LL) layers, and on papaya fruit clusters (BF). Water-sensitive paper labels and artificial targets were used to assess the efficiency. Coverage, density, droplet distribution, and droplet diameter were influenced by the application rates in the following order: 18.0 > 15.0 > 12.0 L ha−1, showing concentrated droplet distribution in the respective layers: UL > ML > LL > BF. The 18.0 L ha−1 rate increased the variables examined, and the droplet coverage on the UL using the XR110015 nozzle was 6.56 times greater than that found on the LL and BF. The MGA015 nozzle presented better results in the LL and BF in all variables analyzed. The UAVs were efficient in applying to the papaya crop and further studies should be carried out in order to confirm the efficacy of plant protection products applied using this technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call