Abstract

The valorisation of lignocellulosic resources, such as oat husks, as components in cementitious composites presents challenges regarding their compatibility with the matrix due to the solubilisation of their surface components and products from alterations induced by the alkaline environment of lime-based matrices. These negatively affect the matrix. This study aims to fill the knowledge gap regarding the compatibility and effects of the extractives found in oat husks with the cement matrix. It intends to characterise oat husks’ structural composition, evaluate the extractive removal efficiency, assess their influence on cement matrix hydration using thermogravimetric techniques, and analyse mechanical strength development between 3 and 28 days. The study concludes that hot water is more efficient for extractive removal, and the immersion duration is more relevant than the number of washing cycles. Furthermore, it confirms that husks’ extractives inhibit cement matrix hydration products and mechanical strength development, especially in the presence of degradation products. These findings are essential for determining more efficient approaches to enhance compatibility between oat husks and cementitious matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call