Abstract

The deoxyribonucleic acid-repair protein O(6)-methylguanine-deoxyribonucleic acid methyltransferase is a major determinant of resistance of cells to various alkylating drugs. Its expression profile is different in different cancer types. Here, we studied the expression and function of O(6)-methylguanine-deoxyribonucleic acid methyltransferase in clear cell renal cell carcinoma. The expression of O(6)-methylguanine-deoxyribonucleic acid methyltransferase was evaluated in clear cell renal cell carcinoma tissues and cell lines by quantitative real-time polymerase chain reaction and immunohistochemistry. The relationship between O(6)-methylguanine-deoxyribonucleic acid methyltransferase expression and clinicopathological characteristics was analyzed. To further investigate the function of O(6)-methylguanine-deoxyribonucleic acid methyltransferase in clear cell renal cell carcinoma resistance to alkylating agents, siRNA targeting O(6)-methylguanine-deoxyribonucleic acid methyltransferase were used to silence the O(6)-methylguanine-deoxyribonucleic acid methyltransferase expression. We found that O(6)-methylguanine-deoxyribonucleic acid methyltransferase is over-expressed in clear cell renal cell carcinoma tissues and cell lines. O(6)-methylguanine-deoxyribonucleic acid methyltransferase expression is related with tumor progression in clear cell renal cell carcinoma patients. Up-regulation of O(6)-methylguanine-deoxyribonucleic acid methyltransferase plays a critical role in primary resistance to alkylating agents. The overexpression of O(6)-methylguanine-deoxyribonucleic acid methyltransferase contributes to resistance of clear cell renal cell carcinoma to standard chemotherapy. Our results have significance for understanding a new pathway of the development of drug resistance of clear cell renal cell carcinoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.