Abstract

Despite the steady increase in female participation in sport over the last two decades, comprehensive research on interventions attenuating the influence of female menstrual physiology on performance remains scarce. Studies involving eumenorrheic women often only test in one menstrual phase to limit sex hormone variance, which may restrict the application of these findings to the rest of the menstrual cycle. The impacts of nutrition-based interventions on athletic performance throughout the menstrual cycle have not been fully elucidated. We addressed this gap by conducting a focused critical review of clinical studies that reported athletic outcomes as well as menstrual status for healthy eumenorrheic female participants. In total, 1443 articles were identified, and 23 articles were included. These articles were published between 2011 and 2021, and were retrieved from Google Scholar, Medline, and PubMed. Our literature search revealed that hydration-, micronutrient-, and phytochemical-based interventions can improve athletic performance (measured by aerobic capacity, anaerobic power, and strength performance) or attenuate exercise-induced damage (measured by dehydration biomarkers, muscle soreness, and bone resorption biomarkers). Most performance trials, however, only assessed these interventions in one menstrual phase, limiting the application throughout the entire menstrual cycle. Improvements in athletic performance through nutrition-based interventions may be contingent upon female sex hormone variation in eumenorrheic women.

Highlights

  • Female participation in sport, as a mode of recreation and profession, has been increasing in the United States and worldwide throughout the last two decades

  • Among the studies examining hydration interventions, we identified the role of carbohydrate–electrolyte solutions (CESs) in improving time-trial performance [33] and increasing exercise time to exhaustion [34] in the follicular phase

  • We identified the role of calcium in favorably modulating exercise-induced bone resorption by reducing parathyroid hormone (PTH) immediately after exercise and 40 min after exercise [39]

Read more

Summary

Introduction

As a mode of recreation and profession, has been increasing in the United States and worldwide throughout the last two decades. After London won the 2012 Olympic Games bid in 2005, England saw an increase of one million women participating in sport and physical activity [1]. In the United States, more than three million girls participate in high school athletics, and 46% of athletic collegiate scholarships are awarded to female recipients [1]. The 2016 Olympic Games had a historic 5059 female athletes, equaling 45% of the participants [2]. Despite this increasing exercise involvement, research supporting the optimization of female athletes and their performance is comparatively sparse. The menstrual cycle has been reported to influence athletic performance [3,4] and exercise metabolism [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call