Abstract
High-order numerical methods for unstructured grids combine the superior accuracy of high-order spectral or finite difference methods with the geometric flexibility of low-order finite volume or finite element schemes. Over the past few years, they have shown promise in enabling implicit large-eddy simulations within the vicinity of complex geometrical configurations. However, the cost of such simulations remains prohibitive. In this paper, the impact of number representation on the efficiency and efficacy of these methods is considered. Theoretical performance models are derived and assessed. Specifically, four test cases are considered: 1) the viscous Taylor–Green vortex, 2) flow over a circular cylinder, 3) flow through a T106c low-pressure turbine cascade, and 4) flow around a NACA 0021 in deep stall. It is found that the use of single (in lieu of double) precision arithmetic does not have a significant impact on accuracy. The performance of the resulting simulations was found to improve between 1.4 and 2.9 times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.