Abstract

AbstractIn this paper, the sensitivity of the Weather Research and Forecasting (WRF) Model to the nudging parameters in simulating July–August (JJA) precipitation was assessed with 16 experiments over the Coordinated Regional Climate Downscaling Experiment East Asia II (CORDEX-EA-II) domain. The effects of various nudging parameters in spectral nudging (referred to as SN) and grid nudging (referred to as AN) experiments are examined, including wavenumbers, relaxation time, nudging levels, and nudging variables for SN and relaxation time and nudging variables for AN. Results showed that the applications of spectral nudging and grid nudging methods in WRF simulations can improve the model’s ability to reproduce the JJA extreme precipitation event and accompanying large-scale fields in 2003. The major findings include 1) spectral nudging is superior to grid nudging in simulating heavy rainfall and low-level circulation, 2) nudging both kinematic and thermodynamic variables is efficient to better simulate the JJA precipitation for both SN and AN simulations, 3) in SN simulations, the options of wavenumbers display stronger impact on JJA precipitation if nudging solely the kinematic variables instead of both kinematic and thermodynamic variables over wet subregions, and 4) the free developed large-scale processes associated with small nudging wavenumbers can diminish the improvement from nudging both kinematic and thermodynamic variables in simulating subseasonal variations of precipitation. Overall, the experiment that adopts spectral nudging of both kinematic and thermodynamic variables, 1-h relaxation time, and four or eight nudging wavenumbers captures the characteristics of summer climate more reasonably.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call