Abstract

We analyze the influence of nuclear effects on the determination of the nucleon axial mass from nuclear cross sections. Our work is based on a formalism widely applied to describe electron-nucleus scattering data in the impulse approximation regime. The results of numerical calculations show that correlation effects, not taken into account by the relativistic Fermi gas model, sizably affect the Q{sup 2} dependence of the cross section. However, their inclusion does not appear to explain the large values of the axial mass recently reported by the K2K and MiniBooNE Collaborations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.