Abstract

NAD+ synthesis is a fundamental process in living cells. The effects of local metabolite production on chromatin influence the epigenetic status of chromatin in DNA metabolism. We have previously shown that K5 acetylation of H2AX by TIP60 is required for the ADP ribosylation activity of PARP-1, for histone H2AX exchange at DNA damage sites. However, the detailed molecular mechanism has remained unclear. Here, we identified de novo NAD synthetase 1 (NAD syn1) as a novel binding partner to H2AX. The enzymatic activity of NAD syn1 is crucial for the ADP ribosylation activity of PARP-1 for the H2AX dynamics at sites of DNA damage. Inhibition of the NAD synthetase activity in the cell nucleus decreased the overall cellular NAD+ concentration, leading to cellular senescence. Accordingly, the acetylation-dependent H2AX dynamics and homologous recombination repair were suppressed, leading to increased tumorigenesis. Our findings have revealed the importance of de novo NAD+ production in the cell nucleus for protection against the decreased DNA repair capacity caused by cellular senescence and thus against tumorigenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.