Abstract

Nonspecific adsorption has been a consistent challenge in the analysis of oligonucleotides. Nonspecific adsorption is a result of interactions between charged acidic analytes and adsorption sites present in metallic surfaces located in the fluidic path of chromatography systems. Due to their high surface area, adsorption to column frits is especially concerning. Poor peak shape, low recovery and compromised LOQ have been associated with this phenomenon. Alternative methods including substitution of stainless steel for different hardware materials and mobile phase additives have been explored in an attempt to minimize this issue. Chemical modification of metal surfaces using hybrid surface technology (HST) by-passes the limitation of stainless steel construction material by forming a hybrid organic/inorganic layer that acts as a barrier and limits nonspecific interactions. In this study we explore the implications of this new technology in sensitive analysis and determination of relative impurity levels of oligonucleotides. Higher relative impurity levels and better reproducibility were obtained with columns using HST.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.