Abstract
A primary characteristic of obstructive sleep apnea (OSA) is chronic exposure to intermittent hypoxia (IH) due to repeated upper airway obstruction. Chronic IH exposure is believed to increase OSA severity over time by enhancing the acute ventilatory response to hypoxia (AHVR), thus promoting ventilatory overshoot when apnea ends and perpetuation of apnea during sleep. Continuous positive airway pressure (CPAP), the gold-standard treatment of OSA, reduces the AHVR, believed to result from correction of IH. However, CPAP also corrects ancillary features of OSA such as intermittent hypercapnia, negative intrathoracic pressure and surges in sympathetic activity, which may also contribute to the reduction in AHVR. Therefore, the objective of this study was to investigate the impact of nocturnal oxygen therapy (to remove IH only) and CPAP (to correct IH and ancillary features of OSA) on AHVR in newly diagnosed OSA patients. Fifty-two OSA patients and twenty-two controls were recruited. The AHVR was assessed using a 5 min iscopanic-hypoxic challenge before, and after, treatment of OSA by nocturnal oxygen therapy and CPAP. Following baseline measurements, OSA patients were randomly assigned to nocturnal oxygen therapy (Oxygen, n = 26) or no treatment (Air; n = 26). The AHVR was re-assessed following two weeks of oxygen therapy or no treatment, after which all patients were treated with CPAP. The AHVR was quantified following ~4 weeks of adherent CPAP therapy (n = 40). Both nocturnal oxygen and CPAP treatments improved hypoxemia (p < 0.05), and, as expected, nocturnal oxygen therapy did not completely abolish respiratory events (i.e., apneas/hypopneas). Averaged across all OSA patients, nocturnal oxygen therapy did not change AHVR from baseline to post-oxygen therapy. Similarly, the AHVR was not altered pre- and post-CPAP (p > 0.05). However, there was a significant decrease in AHVR with both nocturnal oxygen therapy and CPAP in patients in the highest OSA severity quartile (p < 0.05). Nocturnal oxygen therapy and CPAP both reduce the AHVR in patients with the most severe OSA. Therefore, IH appears to be the primary mechanism producing ventilatory instability in patients with severe OSA via enhancement of the AHVR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.