Abstract

In this paper, we investigate the impact of nonlinear distortion on the overall system outage probability of simultaneous wireless information and power transfer enabled two-way amplify-and-forward relaying network by employing three different nonlinear power amplifier (NLPA) models such as traveling wave tube amplifier, soft envelope limiter, and solid-state power amplifier at the relay node. We consider a time-switching based protocol at the energy-constrained relay node to harvest energy and information transmission. We derive the closed-form expression of the system outage probability by utilizing the selection combining technique at the source nodes over Nakagami-m fading channels. System throughput and energy efficiency of the network are also investigated. The impact of NLPA, threshold data-rate, fading severity, and time-switching factor are highlighted on the network's performance. Finally, the derived analytical results are validated by the Monte Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.