Abstract

BackgroundThe groundwater of the Bathinda district of Punjab is contaminated with heavy metals, nitrate (NO3), and sulfate (SO4) exceeding the BIS limits for drinking water in many areas. The article attempts to understand the role of fertilizers, nitrate and sulfate, in the mobilization of heavy metals from the aquifer minerals. MethodHeavy metal mobilization from aquifer sediments was studied through batch experiments using artificial groundwater (AGW) with varying concentrations of NO3 and SO4. For actual field conditions, column experiments were conducted with artificial groundwater containing 50 ppm NO3 as mobile phase and 1 ml/minute flow rate. The leached metal ions from the sediments were analyzed with ICP-MS. Significant findingsIt was found that compared to the AGW without NO3 and SO4, the heavy metal mobilization potential of AGW with NO3 and SO4 was significantly enhanced. The presence of nitrate significantly influenced the leaching of Cr, Co, Ni, Zn, and Hg, moderately affected the mobilization of As, and least impacted the mobilization of Fe, Mn, Cu, Cd, Pb, and U. An increase in leaching of Cr, Mn, Ni, Zn, As, and U was observed with the increase in SO4 concentration from 0 to 400 ppm, however, drastic reduction was observed with SO4 concentration of 500 ppm indicating high concentration of SO4 is posing an inhibitory action. The concentration of Cr, Fe, Co, Ni, Cu, Zn, Se, and Pb were significantly positively correlated indicating similar processes driving the mobilization of these metals. To reduce the mobilization of toxic heavy metals from the aquifer sediments, the NO3 and SO4 from the wastewater and agricultural run-off should be removed/reduced to the extent possible through optimized fertilizer usage, use of organic fertilizers, and treating the wastewater before discharging in the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.