Abstract

Nd3+ doped cobalt ferrite nanoparticles have been synthesized by starch-assisted sol–gel auto-combustion method. The significant role played by Nd3+ added to cobalt ferrite in changing cation distribution and further in influencing structural and magnetic properties, was explored and reported. The crystal structure formation and crystallite size were studied from X-ray diffraction studies. The microstructural features were investigated by field emission scanning electron microscopy and transmission electron microscopy that demonstrates the nanocrystalline grain formation with spherical morphology. An infrared spectroscopy study shows the presence of two absorption bands related to tetrahedral and octahedral group complexes within the spinel ferrite lattice system. The change in Raman modes in synthesized ferrite system were observed with Nd3+ substitution, particle size and cation redistribution. The impact of Nd3+ on cation distribution of Co2+ and Fe3+ at octahedral and tetrahedral sites in spinel ferrite cobalt ferrite nanoparticles was investigated by X-ray photoelectron spectroscopy. Room temperature magnetization measurements showed that the saturation magnetization and coercivity increase with addition of Nd3+ substitution in cobalt ferrite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call