Abstract

The nanostructuring of light-absorbing materials in photoelectrochemical applications can potentially improve the performance of charge transport limited semiconductors by increasing incident light absorption as well as the electrochemically active surface area. However, a drawback associated with an increase in electrode surface area is the increased effect of surface recombination on device performance. To understand the interplay of the positive and negative impacts of nanostructuring, we studied these effects by varying the nanowire length and thereby surface area on the photoelectrochemical performance of tandem core–shell Si/Ta3N5 photoanodes. Si/Ta3N5 nanowires of different lengths, 1.2–3.3 μm, were fabricated by changing the reactive ion etch duration by which the Si nanowires are formed and subsequently characterized by optical UV–vis reflectance measurements, effective charge carrier lifetime measurements, and photoelectrochemical ferrocyanide oxidation. Overall, we show that as the nanowire len...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.