Abstract

Collective migration of endothelial cells is important for wound healing and angiogenesis. During such migration, each constituent endothelial cell coordinates its magnitude and direction of migration with its neighbors while retaining intercellular adhesion. Ensuring coordination and cohesion involves a variety of intra- and inter-cellular signaling processes. However, the role of permeation of extracellular Na+ in collective cell migration remains unclear. Here, we examined the effect of Na+ permeation in collective migration of pulmonary artery endothelial cell (PAEC) monolayers triggered by either a scratch injury or a barrier removal over 24 hours. In the scratch assay, PAEC monolayers migrated in two approximately linear phases. In the first phase, wound closure started with fast speed which then rapidly reduced within 5 hours after scratching. In the second phase, wound closure maintained at slow and stable speed from 6 to 24 hours. In the absence of extracellular Na+, the wound closure distance was reduced by >50%. Fewer cells at the leading edge protruded prominent lamellipodia. Beside transient gaps, some sustained interendothelial gaps also formed and progressively increased in size over time, and some fused with adjacent gaps. In the absence of both Na+ and scratch injury, PAEC monolayer migrated even more slowly, and interendothelial gaps obviously increased in size towards the end. Pharmacological inhibition of the epithelial Na+ channel (ENaC) using amiloride reduced wound closure distance by 30%. Inhibition of both the ENaC and the Na+/Ca2+ exchanger (NCX) using benzamil further reduced wound closure distance in the second phase and caused accumulation of floating particles in the media. Surprisingly, pharmacological inhibition of the Ca2+ release-activated Ca2+ (CRAC) channel protein 1 (Orai1) using GSK-7975A, the transient receptor potential channel protein 1 and 4 (TRPC1/4) using Pico145, or both Orai1 and TRPC1/4 using combined GSK-7975A and Pico145 treatment did not affect wound closure distance dramatically. Nevertheless, the combined treatment appeared to cause accumulation of floating particles. Note that GSK-7975A also inhibits small inward Ca2+ currents via Orai2 and Orai3 channels, whereas Pico145 also blocks TRPC4, TRPC5, and TRPC1/5 channels. By contrast, gene silence of Orai1 by shRNAs led to a 25% reduction of wound closure in the first 6 hours but had no effect afterwards. However, in the absence of extracellular Na+ or cellular injury, Orai1 did not affect PAEC collective migration. Overall, the data reveal that Na+ permeation into cells contributes to PAEC monolayer collective migration by increasing lamellipodial formation, reducing accumulation of floating particles, and improving intercellular adhesion.

Highlights

  • Collective migration of endothelial cells is an essential process during angiogenesis and wound healing [1]

  • pulmonary artery endothelial cell (PAEC) scratch wounds closed much slower in the absence of extracellular Na+, there were two approximately linear phases of the wound closure processes both in the presence and absence of extracellular Na+ (Fig 2A and 2B)

  • The aim of this study was to identify the physiological impacts of Na+ permeation in PAEC scratch wound healing and unscratched collective migration

Read more

Summary

Introduction

Collective migration of endothelial cells is an essential process during angiogenesis and wound healing [1]. Na+ permeation channels implicated in endothelial migration include stretch-sensitive ENaC, NCX, Na+/H+ exchanger 1 (NHX1), Orai, and TRPC1/4 [15,16,17,18,19,20,21]. Several of these channels regulate lamellipodial protrusion. Ca2+ ions regulate contractile forces that steer collective cell migration, cytoskeletal remodeling that sustain lamellipodial activity, and intercellular adhesion that maintains barrier integrity [10, 14, 25, 26, 30,31,32]. Altering cellular Na+ and Ca2+ slows endothelial wound closure [7, 9, 23]https://www.zotero.org/google-docs/?zFxE5M

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.