Abstract

The impact of N221S mutation in hRRM2B gene, which encodes the small subunit of human ribonucleotide reductase (RNR), on RNR activity and the pathogenesis of mitochondrial DNA depletion syndrome (MDDS) was investigated. Our results demonstrate that N221 mutations significantly reduce RNR activity, suggesting its role in the development of MDDS. We proposed an allosteric regulation pathway involving a chain of three phenylalanine residues on the αE helix of RNR small subunit β. This pathway connects the C-terminal loop of β2, transfers the activation signal from the large catalytic subunit α to β active site, and controls access of oxygen for radical generation. N221 is near this pathway and likely plays a role in regulating RNR activity. Mutagenesis studies on residues involved in the phenylalanine chain and the regulation pathway were conducted to confirm our proposed mechanism. We also performed molecular dynamic simulation and protein contact network analysis to support our findings. This study sheds new light on RNR small subunit regulation and provides insight on the pathogenesis of MDDS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.