Abstract

The complexes of La, Ce, Nd, Sm, Eu, Tb and Yb with benzoxazolyl-phenolate, benzothiazolyl-phenolate, benzoxazolyl-naphtholate, benzothiazolyl-naphtholate and 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione ligands were treated with n,γ-irradiation upon a sustained (45 h, absorbed dose of 120 krad, flux of neutrons 5·1013 n/cm2) and a pulse mode (3 ms, absorbed dose of 130 krad, flux of neutrons 3.6·1013 n/cm2). It was found that main characteristics of the compounds (shape of substance, color, IR absorption and photoluminescent spectra) have not changed. With an example of cerium complex [Ce(OON)3]2 it was revealed that the molecular structure of compounds after strong pulse irradiation also does not changed. However, computer simulations of neutron exposure on the same complexes showed significant shift of metal atoms and ligands. Possible reasons for the detected discrepancy between experimental and calculated data are discussed.

Highlights

  • Many organic complexes of lanthanides, due to the peculiarities of the electronic structure of the metal atom, possess luminescent and photovoltaic properties, which determine their use in modern optoelectronic devices and in biomedicine[1]

  • We report on the study of the effects of n,γ-radiation on lanthanide organic complexes in order to determine the possibility of their use in devices operating under conditions of enhanced radiation

  • With the example of organo-lanthanide complexes, the radiation resistance of molecular metal-organic compounds was studied for the first time

Read more

Summary

Introduction

Many organic complexes of lanthanides, due to the peculiarities of the electronic structure of the metal atom, possess luminescent and photovoltaic properties, which determine their use in modern optoelectronic devices and in biomedicine[1]. Over the past century, in the sphere of human activity, new areas have emerged and are rapidly expanding, where a new component — ionizing irradiation (InI) — is being added to ordinary conditions. Such areas include space, active zones of nuclear power plants, concentrating and processing radioactive materials enterprises, radio- therapy and diagnostics, territories polluted with nuclides as a result of accidents. In devices designed to operate under InI conditions, only inorganic semiconductor materials are used, studies have shown their relatively low radiation resistance[2,3,4,5]. A modified well-known europium 2-thenoyltrifluoroacetonate Eu(TTA)3(DME)[2], which has a different type of ligands and has good luminescent properties, was used

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.