Abstract
Adaptive switching between multiple-input multiple-output (MIMO) transmission strategies like diversity and spatial multiplexing is a flexible approach to respond to channel variations. It is desirable to obtain accurate estimates of the switching points between these transmission schemes to realize the capacity gains made possible by adaptive switching. In this paper, it is shown that the accuracy of switching point estimates for switching between statistical beamforming and spatial multiplexing is improved by taking into account the effects of mutual coupling between antenna array elements. The impact of mutual coupling on the ergodic capacities of these two transmission strategies is analyzed, by deriving expressions for the same. Adaptive switching between combinations of transmission strategies and antenna array configurations (using reconfigurable antenna arrays) is shown to produce maximum capacity gains. Expressions for the switching points between transmission strategies and/or antenna configurations, including mutual coupling effects, are derived and used to explore the influence of mutual coupling on the estimates. Finally, measurements taken from reconfigurable rectangular patch antenna arrays are used to validate the analytical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.