Abstract

Nanocrossbar is a potential memory architecture to integrate memristor to achieve large scale and high density memory. However, based on the currently widely-adopted parallel reading scheme, scalability of the nanocrossbar memory is limited, since the overhead of the reading circuits is in proportion with the size of the nanocrossbar component. In this paper, a multiplexed reading scheme is adopted as the foundation of the discussion. Through HSPICE simulation, we reanalyze scalability of the nanocrossbar memristor memory by investigating the impact of various circuit parameters on the output voltage swing as the memory scales to larger size. We find that multiplexed reading maintains sufficient noise margin in large size nanocrossbar memristor memory. In order to improve the scalability of the memory, memristors with nonlinear I—V characteristics and high LRS (low resistive state) resistance should be adopted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call