Abstract

To investigate the impact of multifocal gas permeable contact lens (MFGPCL) in various add power and distance/near area allocation on short-term changes of choroidal thickness (ChT), axial length (AL), and retinal defocus profile in young adults. Seventeen young adults (2 males and 15 females; age 23.17±4.48y) were randomly assigned to wear two designs binocularly with a one-week washout period in between. Total of four MFGPCL designs were assessed. All designs were distance-center that varied in two add power (+1.50 and 3.00 D) and/or two distance zone (DZ) diameters (1.50 and 3.00 mm; design A: DZ 1.5/add 3.0, B: DZ 1.5/add 1.5, C: DZ 3.0/add 3.0, D: DZ 3.0/add 1.5). ChT, AL, and peripheral refraction data were collected on each subject at baseline, on days 1 and 7 of MFGPCL daily wear. ChT was assessed in four quadrants using a spectral-domain optical coherence tomography. AL was shortened by -26±44 µm with lens C, -18±27 µm with lens D, -13±29 µm with lens A, and -8±30 µm with lens B (all P<0.05). A significant overall increase in ChT was observed with all 4 designs (lens A: +6±6 µm, B: +3±7 µm, C: +8±7 µm, and D: +8±7 µm). Temporal and superior choroid exhibited more choroidal thickening associated with MFGPCL. All designs induced significant relative peripheral myopia (RPM) beyond the central 20° across the horizontal meridian in both nasal and temporal fields (P<0.05). MFGPCLs show a significant influence on ChT and AL, which are associated with significant increase in RPM after short-term wear. The reliability and feasibility of quantifying short-term changes in ChT support its use as a promising marker for the long-term efficacy of myopia-controlling treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.