Abstract

Even though there is a pressing interest in clean energy sources, compression ignition (CI) engines, also called diesel engines, will remain of great importance for transportation sectors as well as for power generation in stationary applications in the foreseeable future. In order to promote applications dealing with complex diesel alternative fuels by facilitating their integration in numerical simulation, this paper targets three objectives. First, generate novel diesel fuel surrogates with more than one component. Here, five surrogates are generated using an advanced chemistry solver and are compared against three mechanisms from the literature. Second, validate the suggested reaction mechanisms (RMs) with experimental data. For this purpose, an engine configuration, which features a reacting spray flow evolving in a direct-injection (DI), single-cylinder, and four-stroke motor, is used. The RNG k-Epsilon coupled to power-law combustion models is applied to describe the complex in-cylinder turbulent reacting flow, while the hybrid Eulerian-Lagrangian Kelvin Helmholtz-Rayleigh Taylor (KH-RT) spray model is employed to capture the spray breakup. Third, highlight the impact of these surrogate fuels on the combustion properties along with the exergy of the engine. The results include distribution of temperature, pressure, heat release rate (HRR), vapor penetration length, and exergy efficiency. The effect of the surrogates on pollutant formation (, , ) is also highlighted. The fifth surrogate showed 47% exergy efficiency. The fourth surrogate agreed well with the maximum experimental pressure, which equaled 85 Mpa. The first, second, and third surrogates registered 400, 316, and 276 g/kg fuel, respectively, of the total CO mass fraction at the outlet. These quantities were relatively higher compared to the fourth and fifth RMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.