Abstract

FoxP3+CD4+CD25+ regulatory T-cells (Treg) have been shown to effectively reduce the severity of experimental acute graft-versus-host disease (aGvHD) while sparing graft-versus-leukemia activity. These findings, in concert with the observation that human and murine Treg share functional characteristics, have fueled interest in clinical trials to control aGvHD. Recent data indicates that the immunosuppressant rapamycin (RAPA) in contrast to cyclosporine A does not interfere with in vivo function of Treg and could enhance Treg expansion in vitro by a yet unknown mechanism.To investigate the impact of mTOR inhibition on proliferating Treg and Tconv, both cell types were exposed to CD3/CD28 Mabs in the presence of different RAPA concentrations in vitro. Phosphorylation of mTOR downstream products p70S6K1 and 4E-BP1 were assessed by western blot and flow cytometry. Inhibition of the phosphorylation of p70S6K1 and 4E-BP1 was observed in both populations in the presence of RAPA. Interestingly, Treg were more resistant to mTOR inhibition as compared to Tconv and displayed significantly higher phosphorylated products in the presence of RAPA at 10 nM (MFI Treg vs Tconv, p<0.001) and at 100nM (MFI Treg vs Tconv, p<0.001).To investigate whether Treg and RAPA protect from aGvHD in a synergistic manner, BALB/c recipients were transplanted with H-2 disparate BM and 1.6x10e6 T-cells (FVB/N) after lethal irradiation (8 Gy). aGvHD lethality was only slightly reduced when suboptimal Tconv:Treg ratios were employed (4:1, 8:1), or when recipients were treated with a non-protective RAPA dose (0.5 mg/kg bodyweight). Combining a suboptimal Tconv:Treg ratio with a non-protective RAPA dose reduced expansion of luciferase expressing (luc+) Tconv and pro-inflamatory cytokines and improved survival indicative for an additive in vivo effect of RAPA and Treg.To evaluate the impact of RAPA on in vivo T cell expansion, either luc+ Tconv or luc+ Treg were adoptively transferred. In vivo bioluminescence imaging demonstrated that RAPA had a more potent inhibitory effect on proliferation of Tconv as compared to Treg (p<0.05 vs. NS). We did not observe RAPA to increase FoxP3+ Treg numbers in vivo, or to enhance GITR or CTLA-4 expression.Thus, increased Treg numbers observed in RAPA containing expansion cultures are likely due to a lower susceptibility of this cell population to mTOR inhibition. This could explain the observed synergistic effect of RAPA and Treg in aGvHD protection which has relevance for clinical trials utilizing Treg to prevent aGvHD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.