Abstract

To evaluate the impact of movement and motion-artefact correction systems on CBCT image quality and interpretability of simulated diagnostic tasks for aligned and lateral-offset detectors. A human skull simulating three diagnostic tasks (implant planning in the anterior maxilla, implant planning in the left-side-mandible and mandibular molar furcation assessment in the right-side-mandible) was mounted on a robot performing six movement types. Four CBCT units were used: Cranex 3Dx (CRA), Ortophos SL (ORT), Promax 3D Mid (PRO), and X1. Protocols were tested with aligned (CRA, ORT, PRO, and X1) and lateral-offset (CRA and PRO) detectors and two motion-artefact correction systems (PRO and X1). Movements were performed at one moment-in-time (t1), for units with an aligned detector, and three moments-in-time (t1-first-half of the acquisition, t2-second-half, t3-both) for the units with a lateral-offset detector. 98 volumes were acquired. Images were scored by three observers, blinded to the unit and presence of movement, for motion-related stripe artefacts, overall unsharpness, and interpretability. Fleiss' κ was used to assess interobserver agreement. Interobserver agreement was substantial for all parameters (0.66-0.68). For aligned detectors, in all diagnostic tasks a motion-artefact correction system influenced image interpretability. For lateral-offset detectors, the interpretability varied according to the unit and moment-in-time, in which the movement was performed. PRO motion-artefact correction system was less effective for the offset detector than its aligned counterpart. Motion-artefact correction systems enhanced image quality and interpretability for units with aligned detectors but were less effective for those with lateral-offset detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.