Abstract

Using internal photoemission of electrons from few-monolayer thin MoS2 films into SiO2 we found that the MoS2 layer transfer processing perturbs electroneutrality of the interface, leading to an increase of the electron barrier height by ≈0.5–1 eV as compared to the case of the same films synthesized directly on SiO2. This effect is associated with the formation of an interface dipole, tentatively ascribed to interaction of H2O molecules with the SiO2 surface resulting in the incorporation of silanol (SiOH) groups. This violation of the interface electroneutrality may account for additional electron scattering in ultrathin transferred films and threshold voltage instabilities. Post-transfer annealing in H2S is shown to reduce the transfer-induced interface degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.