Abstract
AbstractThe degradation of biodegradable microplastics (MPs) can either stimulate or inhibit the decomposition of soil organic carbon (SOC), but the factors influencing these phenomena remain unclear. In this study, we used the 13C natural abundance to differentiate between carbon dioxide (CO2) arising from the mineralization of SOC and poly(lactic acid) (PLA) MP under varying soil water holding capacity (WHC) in alkaline and acidic soils. We also quantified the incorporation of soil‐ or PLA‐derived carbon (C) into phospholipid fatty acid (PLFA)‐distinguishable microbial groups. An increase in soil moisture did not significantly affect PLA MP degradation in alkaline soil, but significantly increased PLA degradability in acidic soil. In particular, the percentages of PLA‐derived C incorporated into PLFA‐distinguishable gram‐negative and gram‐positive bacteria were 14%–63% and 5%–33%, respectively, in all the treatments. The presence of PLA MP induced positive priming effects from 0 to 20 d in all the treatments but subsequently induced negative priming effects under some conditions. The total priming effects induced by PLA MP were significantly greater in alkaline soil with ≥70% WHC (37–43 mg C kg−1 soil) than in this soil with 50% WHC (8.6 mg C kg−1 soil). The total priming effect was 72–78 mg C kg−1 soil in acidic soil with ≤70% WHC, but a negative priming effect was observed in this soil with 90% WHC (−56 mg C kg−1 soil). In alkaline soil, the dissolved organic carbon content was positively correlated with the priming effect, but a negative relationship was observed between the priming effect and the amount of soil‐derived C incorporated into gram‐negative bacteria and fungi. In acidic soil, a positive correlation was found between the priming effect and the soil nitrate content. In summary, our findings indicate that 0.4%–2.8% of PLA MP was degraded in soils after 2 months, and that the intensity and direction of the priming effect induced by PLA MP are regulated by soil moisture and pH, but further exploration is needed to elucidate the microbial mechanisms underlying these effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.