Abstract

The performances of the soil moisture retrieval and assimilation algorithms using microwave observations rely on realistic estimates of brightness temperatures (T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> ) from microwave emission models. This study identifies circumstances when current models fail to reliably relate near-surface soil moisture to an observed T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> at L-band; offers a plausible explanation of the physical cause of these failures; and recommends improvements needed so that L-band observations can provide reliable estimates of soil moisture, more universally. Physically consistent soil parameters and moisture at the surface were estimated by using dual-polarized C-band observations during an intensive field experiment, for an irrigation event and subsequent drydown. These derived parameters were used in conjunction with the in situ moisture in deeper layers and different moisture profiles within the moisture sensing depth to obtain estimates of H-pol T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> at L-band, that provided best matches with the observed T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> . The general assumptions of linear moisture distribution, with uniform or exponentially decaying weighting functions provided realistic T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> during the later stages of the drydown. However, the RMSDs of the T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> s were up to 10.37 K during the wet period. In addition, the use of one value of moisture representing the entire moisture sensing depth during this highly dynamic stage of the drydown provides unrealistic estimates of emissivity, and hence, T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> at L-band. This study recommends use of a hydrological model to provide dynamic, realistic soil moisture profiles within the sensing depth and also an improved emissivity model that utilizes these detailed profiles for estimating T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.