Abstract

ObjectiveTo compare correlations between pulmonary function test (PFT) results and different reconstruction algorithms and to suggest the optimal reconstruction protocol for computed tomography (CT) quantification of low lung attenuation areas and airways in healthy individuals.Materials and MethodsA total of 259 subjects with normal PFT and chest CT results were included. CT scans were reconstructed using filtered back projection, hybrid-iterative reconstruction, and model–based IR (MIR). For quantitative analysis, the emphysema index (EI) and wall area percentage (WA%) were determined. Subgroup analysis according to smoking history was also performed.ResultsThe EIs of all the reconstruction algorithms correlated significantly with the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) (all p < 0.001). The EI of MIR showed the strongest correlation with FEV1/FVC (r = −0.437). WA% showed a significant correlation with FEV1 in all the reconstruction algorithms (all p < 0.05) correlated significantly with FEV1/FVC for MIR only (p < 0.001). The WA% of MIR showed the strongest correlations with FEV1 (r = −0.205) and FEV1/FVC (r = −0.250). In subgroup analysis, the EI of MIR had the strongest correlation with PFT in both ever-smoker and never-smoker subgroups, although there was no significant difference in the EI between the reconstruction algorithms. WA% of MIR showed a significantly thinner airway thickness than the other algorithms (49.7 ± 7.6 in ever-smokers and 49.5 ± 7.5 in never-smokers, all p < 0.001), and also showed the strongest correlation with PFT in both ever-smoker and never-smoker subgroups.ConclusionCT quantification of low lung attenuation areas and airways by means of MIR showed the strongest correlation with PFT results among the algorithms used, in normal subjects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call