Abstract

ABSTRACT In the last year there have been reports from various research groups around the globe about the onset of modal instabilities (or dramatic degradations of the beam quality) in high average power laser systems. Many of these reports describe how the usual output Gaussian beam of the fiber laser system transforms into a higher order mode (most typically a LP 11 -like mode). This effect is commonly attributed to tr ansversal hole burning. However, this theory alone cannot really explain reports of this effect being observed in fibers in which only the central part of the fiber core has been doped (such as the Rod-Type fibers). As far as we know, up to date no theoretical work has been published in the subject to investigate the true physical origin of this effect. In this paper we present such study and the conclusions obtained from it. It has been found that conventional transversally-resolved rate equation models, able to take transversal hole burning into account, cannot explain this eff ect when preferential ga in designs are investigated. Acco rding to our investigations the inclusion of modal interference along the fibe r is crucial to explain this effect in all type of fibers. Unfortunately current BPM models (able to account for modal interference along the fiber) are not able to take into account transversal hole burning. Thus, we have developed an advanced active fiber model that combines BPM and the transversally-resolved rate equations. This model reveals, for the first time, the im portant role played by modal interference along the fiber. Keywords: Mode Instabilities, Beam Propagation, Fiber Laser

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.