Abstract

AbstractThe effect of aiding and opposing buoyancy (−1 ≤ Ri ≤ 1) on flow and heat transfer across cylinders specifically arranged in an equilateral triangular array in a heat exchanger has not previously been studied. Periodic boundary condition in the transverse direction is imposed where porosity of the array ranges from 0.7 to 0.99. The influence of buoyancy and Prandtl number (1 and 50) on the flow structure and its effect on the overall heat transfer is thoroughly elucidated in the present work. The impact of aiding/opposing buoyancy on the thermal performance of the array is predominant at higher porosities. The average drag of the array of cylinders increases with an increase in the aiding buoyancy and decreases with an increase in opposing buoyancy with respect to forced convection. The porosity of the triangular array has an inverse relation with the average drag coefficient, barring few exceptions which are explained in detail in the present work. The heat exchange is assertively higher at opposing‐buoyancy cases for all values of porosity and Prandtl number. The present results are in agreement with the available experimental/numerical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.