Abstract

Abstract Before the final experimental validation and certification of a turbo-engine, designers perform a numerical simulation of its vibratory properties, among other things, in order to estimate its lifespan and adjust the design in an optimization process. One possible practical solution to decrease the vibratory response is to add underplatform dampers to the system. These components dissipate energy by friction and are widely employed in turbomachinery. However, a specific underplatform damper is usually efficient only for a specific mode. The purpose of this work is to investigate the possibility of adding different kinds of underplatform dampers to the cyclic structure in order to decrease the vibratory energy over a larger panel of modes. Different methods exist to determine the vibrations of nonlinear cyclic symmetric systems, but creating a robust methodology to account for the additional effect of mistuning remains a big challenge in the community. In this paper, the structure is mistuned through the friction coefficient of the dampers and not by altering its geometry, as is usually done in the literature. First, assuming a cyclic symmetric structure, the performance of the dampers is assessed for specific modes. Then, employing a method recently developed, the efficiency of an intentional mistuning pattern of underplatform dampers is studied and an optimal pattern proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call