Abstract

ABSTRACT In hot, arid environments, many outdoor spaces are cooled by misting systems. These systems spray a fine mist of water droplets that cool down the surrounding air through the endothermic evaporation process. As water sources often contain dissolved minerals, the evaporating droplet may leave an airborne particulate matter (PM) residue. Currently there is no information available on the impact of misting systems on localized PM concentrations. In this study, PM concentrations are found to increase by a factor of 8 from ambient levels in the vicinity of a residential misting system in controlled experiments. These experiments show PM concentrations decrease with increasing distance from misting systems. Chemical data reveal that chloride and magnesium ions may be used locally as tracers of particles from misting systems as chloride may be subject to atmospheric transformation. The average chloride concentration was 71 µg m–3 in samples collected while the misting system was operational and below the detection limit (< 8.2 µg m–3) in samples collected when the misting system was off. The average magnesium concentration was 11.7 µg m–3 in samples when misting system was on and 0.23 µg m–3 in samples when misting system was off. Ambient measurements of PM10 in public places cooled by misting ranged from 102 ± 10 µg m–3 to 1470 ± 150 µg m–3, and PM2.5 ranged from 95 ± 10 µg m–3 to 990 ± 100 µg m–3. Calculations suggest that misting systems could potentially emit PM quantities on the order of a gram per hour in the respirable particle size range.

Highlights

  • Particulate matter (PM) refers to microscopic solid and liquid particles that are suspended in air, consisting generally of organic matter, soot, metals, acids, soil, and dust (Seinfeld and Pandis, 2016)

  • This study investigates the impact of misting systems on local air quality by measuring particle concentrations in a controlled experiment while a misting system is periodically operated, and by measuring PM concentrations in public places with misters in operation

  • The impact of misting systems on PM concentrations was investigated during a controlled experiment in the backyard of a house and in four different public places

Read more

Summary

Introduction

Particulate matter (PM) refers to microscopic solid and liquid particles that are suspended in air, consisting generally of organic matter, soot, metals, acids, soil, and dust (Seinfeld and Pandis, 2016). Particles greater than 2.5 μm in diameter may be inhaled and deposited in the tracheobronchial region; this region is covered with a layer of mucus, where the particles are deposited and removed from the body by the motion of cilia (Finlayson-Pitts and Pitts, 1999). Fine particles, those less than 2.5 μm in diameter, can be inhaled by the lungs and reach the alveoli, where gas exchange with the blood takes place and where there is no mucus or cilia (Phalen, 2009). Components of fine particles may enter the bloodstream, and the residence time of these particles in the body is much greater than that of larger particles that are deposited on mucus in the tracheobronchial region (Schlesinger, 1988)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call