Abstract

Abstract Errors in genotype determination can lead to bias in the estimation of genotype effects and gene-environment interactions and increases in the sample size required for molecular epidemiologic studies. We evaluated the effect of genotype misclassification on odds ratio estimates and sample size requirements for a study of NAT2 acetylation status, smoking, and bladder cancer risk. Errors in the assignment of NAT2 acetylation status by a commonly used 3-single nucleotide polymorphism (SNP) genotyping assay, compared with an 11-SNP assay, were relatively small (sensitivity of 94% and specificity of 100%) and resulted in only slight biases of the interaction parameters. However, use of the 11-SNP assay resulted in a substantial decrease in sample size needs to detect a previously reported NAT2-smoking interaction for bladder cancer: 1,121 cases instead of 1,444 cases, assuming a 1:1 case-control ratio. This example illustrates how reducing genotype misclassification can result in substantial decreases in sample size requirements and possibly substantial decreases in the cost of studies to evaluate interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.