Abstract

Minimization is among the most common methods for controlling baseline covariate imbalance at the randomization phase of clinical trials. Previous studies have found that minimization does not preserve allocation randomness as well as other methods, such as minimal sufficient balance, making it more vulnerable to allocation predictability and selection bias. Additionally, minimization has been shown in simulation studies to inadequately control serious covariate imbalances when modest biased coin probabilities (≤0.65) are used. This current study extends the investigation of randomization methods to the analysis phase, comparing the impact of treatment allocation methods on power and bias in estimating treatment effects on a binary outcome using logistic regression. Power and bias in the estimation of treatment effect was found to be comparable across complete randomization, minimization, and minimal sufficient balance in unadjusted analyses. Further, minimal sufficient balance was found to have the most modest impact on power and the least bias in covariate-adjusted analyses. The minimal sufficient balance method is recommended for use in clinical trials as an alternative to minimization when covariate-adaptive subject randomization takes place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.