Abstract

The impact of mid- and upper-level dry air, represented by low relative humidity (RH) values, on the genesis of tropical cyclone (TC) Durian (2001) in the South China Sea was investigated by a series of numerical experiments using the Weather Research and Forecasting model. The mid-level RH was lowered in different regions relative to TC Durian (2001)’s genesis location. Results suggest that the location of dry air was important to Durian (2001)’s genesis and intensification. The rapid development of the TC was accompanied by sustained near-saturated mid- and upper-level air, whereas low humidity decelerated its development. Water vapor budget analysis showed that moisture at mid and upper levels was mainly supplied by the vertical convergence of moisture flux and the divergence terms, and consumed by the condensation process. The horizontal convergence of moisture flux term supplied moisture in the air moistening process but consumed moisture in the air drying process. With a dryer mid- and upper-level environment, convective and stratiform precipitation were both inhibited. The upward mass fluxes and the diabatic heating rates associated with these two precipitation types were also suppressed. Generally, convection played the dominant role, since the impact of the stratiform process on vertical mass transportation and diabatic heating was much weaker. The vorticity budget showed that the negative vorticity convergence term, which was closely related to the inhibited convection, caused the vorticity to decrease above the lower troposphere in a dryer environment. The negative vorticity tendency is suggested to slow down the vertical coherence and the development rate of TCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call