Abstract

Microfluidization is a technique commonly used to disrupt and homogenize dispersions such as oil-in-water emulsions or cellular suspensions. In this study, we investigated its ability to alter the physicochemical properties of plant-derived insoluble protein aggregates such as those found in pea protein extracts. Insoluble pea protein dispersions (5% w/w, pH 7) were homogenized at 25–150 MPa for 1–5 cycles. Increasing the homogenization pressure and cycles decreased the particle size (d43) of the unhomogenized insoluble pea proteins from 180 ± 40 μm to 0.2 ± 0.0 μm (at ≥ 125 MPa), leading to more transparent dispersions. Furthermore, the solubility of the insoluble pea proteins increased from 23 ± 1% to 86 ± 4%. Treatments with chaotropic agents, dithiothreitol and urea, revealed that insoluble pea protein aggregates were stabilized not only by disulphide bonds but also by hydrogen bonds and hydrophobic interactions. These molecular interactions were disrupted by microfluidization. The study provides insights into the disruption mechanism of insoluble pea proteins by applying microfluidization and offers a mean to improve their technofunctional properties to facilitate further use in food manufacture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.