Abstract

Experimental aging studies are commonly conducted on lithium-ion batteries by full charge and discharge cycles. However, such profiles may differ from the actual operation of batteries in electric vehicles and stationary applications, where they are subjected to different partial charges and discharges. These partial cycles, which take place during a main charge or discharge process, are called micro-cycles if their depth of discharge is <2 %. A number of authors have pointed out the relevance of the time resolution to estimate the energy throughput of a battery due to these micro-cycles in applications such as renewable microgrids. However, to the best of our knowledge, there are no experimental studies in the literature that assess the impact of these micro-cycles on battery degradation. In this article, the impact of micro-cycles on the loss of performance of a lithium-ion battery is experimentally studied. The results show that micro-cycles have a negligible, or even positive effect on the aging of lithium-ion cells compared to the aging caused by full cycles. In fact, if charge throughput or equivalent full cycles are used to measure the use of a battery, then cells subjected to micro-cycles exhibit a 50 % extended lifetime compared to cells only subjected to full cycles. More precisely, cells including micro-cycles with depth of discharge of 0.5 % lasted for nearly 3000 equivalent full cycles, whereas cells aged under standard deep cycles lasted for no >1500. Nevertheless, if the number of deep cycles, disregarding micro-cycles, is the unit to measure battery use, then the degradation of cells with and without micro-cycles is similar. Based on this result, the number of cycles can be identified as a more accurate variable to measure the use of a cell, in comparison to charge throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.